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Abstract

In the era of big data, the scale and complexity of spatial data are continuously
increasing, making the effective partitioning and classification of spatial vector
point sets a critical and challenging problem. This study proposes a spatial vector
point set partitioning model based on deep learning, which leverages techniques
such as Convolutional Neural Networks (CNN) and PointNet. Through an
end-to-end learning process, the model automatically extracts the intrinsic
structures and patterns of the data. The method employs 3D-CNN and PointNet
models to process point cloud data, achieving efficient and accurate partitioning
results. The findings indicate that the model demonstrates stronger robustness and
higher accuracy when handling large-scale, high-dimensional data, with a
classification accuracy reaching 100%. In conclusion, the spatial vector point set
partitioning model based on deep learning holds significant theoretical and
practical value, offering more precise and reliable technical support for related
fields.
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1|Introduction
With the rapid development of information technology, we are now in a data-driven era. The
application of various sensors and data acquisition devices leads to the increasing scale and
complexity of spatial data, which is not only explosive in quantity, but also more diverse in type
and structure. As an important form of spatial data, spatial vector point set has a wide range of
applications, covering many fields such as geographic information system (GIS), remote sensing
image analysis, robot path planning, computer vision and so on. These application fields put
higher requirements for the processing and analysis of spatial data, especially in the division and
classification of data. Traditional spatial data partitioning methods, such as K-mean clustering,
hierarchical clustering, and density-based clustering methods (e. g., DBSCAN), perform well
when handling small-scale data. However, with the increasing data scale and increasing data
dimension, these traditional methods face problems such as low computational efficiency, long
processing time and unstable clustering effect. Moreover, noise and outliers in high dimensional
spatial data also have a significant impact on the effects of traditional clustering methods. The
existence of these problems limits the application of traditional methods to large-scale,
high-dimensional spatial data.

In this context, the rapid development of deep learning techniques provides new ideas for
solving the problem of spatial vector point set division. Deep learning models, especially
convolutional neural network (CNN) and autoencoder (Autoencoder), have achieved remarkable
results in image classification, object detection and semantic segmentation. These models are able
to automatically learn complex features of the data and perform efficient feature extraction.
Applied deep learning techniques to the division of spatial data can show greater robustness and
higher accuracy when processing large-scale, high-dimensional data. The spatial vector point set
division model based on deep learning can not only make use of the powerful feature extraction
ability of deep neural network, but also automatically learn the intrinsic structure and pattern of
data through the end-to-end learning process. This approach is expected to overcome the
limitations of traditional methods and achieve efficient division and accurate classification of
complex spatial data. For example, in remote sensing image analysis, deep learning model can be
trained to identify and classify different surface features; in robot path planning, the model can
help the robot find the optimal path in complex environment. In addition, the flexibility and
scalability of deep learning models also enable them to be customized and optimized according
to the requirements of different application scenarios.

The research and development of the spatial vector point set division model based on deep
learning has both important theoretical significance and extensive practical application value. By
deeply exploring the potential of deep learning in spatial data processing, it can promote the
development of spatial data analysis technology and provide innovative solutions for multiple
application scenarios. This can not only improve the efficiency and accuracy of existing systems,
but also explore new application areas, such as intelligent transportation systems, environmental
monitoring, urban planning, etc. Deep learning has promising applications in the field of spatial
vector point set division. As technology continues to advance and innovate, it is reasonable to
believe that deep learning will play an increasingly important role in spatial data analysis in the
future. For example, through deep learning model, urban traffic flow can be predicted more
accurately and traffic signal control is optimized; in environmental monitoring, the distribution
and diffusion of pollutants can be identified and monitored more effectively; in urban planning,
land use planning and resource allocation can be conducted more scientifically. These
applications can not only improve the intelligent level of urban management, but also provide
residents with a higher quality of living environment. In short, the application of deep learning
technology in spatial vector point set division can not only solve the challenges encountered by
traditional methods in dealing with large-scale and high-dimensional data, but also provide more
accurate and reliable technical support for applications in related fields. With the continuous
development of technology, the application of deep learning in spatial data analysis will be more
extensive, and its potential and value will be continuously explored and realized.

2|Related Works



In the field of spatial vector point set division, deep learning methods have received extensive
attention and research recently. Yu Xijun and Duan Yong [1] proposed a 3 D point cloud
classification method based on PointCloudTransformer and optimized integration learning,
which shows good performance in improving classification accuracy and efficiency. Aida, Zhang
Xiaoyang, Xu Ce and other [2] summarized the new progress of large-scale point cloud deep
learning semantic segmentation methods, and introduced the performance of various latest
technologies and algorithms in practical application in detail. Jia Mingda, Yang Jinming, Meng
Weiliang and other [3] discussed the environmental target detection technology of fusion point
cloud and image, and proposed a multi-mode fusion method, which effectively improved the
accuracy and reliability of target detection. Zhang Yi Yao [4] proposed a new target detection
framework based on 3 D convolutional neural network to verify its superior performance in
complex environment. In the field of point cloud object tracking, [5] studied an algorithm based
on deep learning and proposed the method of multi-scale feature fusion, which significantly
improves the tracking accuracy and robustness. Chen Shaojin [6] proposed a deep learning
method based on geometric features for semantic segmentation of airborne point clouds, and
verifies its superior performance in complex terrain through experiments. Lu Bin and Wang
Zhiyuan [7] studied the regional growth point cloud segmentation method combining supervoxel
and color information, and proposed a new regional growth algorithm, which effectively
improves the accuracy and efficiency of segmentation. Zhang Dongdong, Guo Jie, Chen Yang [8]
combined deep learning and integrated learning to propose a new point cloud object recognition
method, showing its wide applicability and efficiency in different scenarios. Guo Dawei, Li
Jinghao and Lu Jun [9] proposed the multi-scale deep learning method of three-dimensional
point cloud registration, and verified its high efficiency and accuracy in various registration tasks
through experiments. Jiang Peiqi, Wu Jie, Zhang Shirong and other [10] studied the point cloud
segmentation and flood risk simulation method based on deep learning, and proposed a new
segmentation and simulation framework, which showed good application prospects in flood risk
assessment. Shu Jun et al. [11] proposed a multi-modal point cloud classification network based
on the residual multi-layer perceptron (MLP), which enhances the classification performance by
integrating multiple features. Their research provides new perspectives for processing
multi-source point cloud data. Then, Liu Hui et al. [12] proposed a method based on lightweight
PointNet network for the real-time identification of targets in the agricultural field, especially in
the forest orchard spray operation. This work not only improves the real-time performance of
the identification, but also reduces the demand for computational resources through a
lightweight design. Liu Origin and other [13] further explored the field of point cloud semantic
segmentation, and they proposed a network structure combining feature fusion and loss
optimization, aiming to improve the segmentation accuracy. This study provides an effective
solution for point cloud segmentation tasks by optimizing the loss function and feature fusion
strategy. In terms of point cloud registration technology, Liang Jietao et al. [14] proposed a point
cloud registration method based on coordinate geometry sampling. Their research improves the
efficiency and accuracy of registration through innovative sampling techniques. Although the
details of the literature are not currently available, this work has the important implications for
the development of point cloud processing technologies based on the summary provided. Finally,
Xu Jie et al. [15] conducted research on the classification and segmentation of tree point cloud in
nurseries. They improved the classification and segmentation ability of tree point cloud data
based on the improved PointNet + + model. This study has potential applications for forestry
resource management and ecological environment monitoring.

The main work of this paper is to develop and evaluate a deep learning-based spatial vector point
set division model, which uses 3D-CNN and Point net technologies to automatically extract the
intrinsic structure and patterns of point cloud data, realizing efficient spatial data division and
classification. The results show that the model has excellent robustness and accuracy in
processing large-scale and high-dimensional data, and the classification accuracy reaches 100%,
providing innovative technical support for GIS, remote sensing image analysis and other
application fields, and demonstrating the broad application prospect of deep learning in spatial
data processing.



3|Theory and Method
3.1|3DCNN model

3DConvolutional neural networks (3 DCNN) are used to process three-dimensional spatial data,
such as 3D images, videos, and point cloud data. Its basic operations include 3D convolution,
activation function, pooling and full connection layer. The specific structure is shown in the
figure below.

X ∈ ℝD×H×W×CDHWCLet the input data be a 3 D matrix, where the depth, the height, the width,
and the number of channels (for example, the number of channels in the RGB image is 3). The
3D convolutional layer slides over the input data through a 3 D convolution kernel (filter) for the
convolution operation. Let the convolution kernel be, where is the depth, height, and width of
the convolution kernel, the number of input channels, and the number of output channels.K ∈
ℝkD×kH×kW×C×C′kD, kH, kWCC′ In the 3D convolution, the convolution kernel slides in the depth,
height, and width direction of the input data. For each position, each value of the convolution
kernel was multiplied by the corresponding input data value and then summed to obtain an
output value. This process is repeated throughout the input data to generate output feature maps.
The convolution operation formula is as follows:

Yi,j,k,c′ =
c=1

C

 �
d=1

kD

 �
ℎ=1

kH

 �
w=1

kW

 � Xi+d−1,j+ℎ−1,k+w−1,c ⋅ Kd,ℎ,w,c,c′ + bc′

YAmong them, it is the convolution output, which is the bias.bc′Xi+d−1,j+ℎ−1,k+w−1,c : Value of

the data in the first channel.(i + d − 1, j + ℎ − 1, k + w − 1)cKd,ℎ,w,c,c′(d, ℎ, w)cc′ : The weight
between the convolution kernel in, position, the first input channel and the first output
channel.Yi,j,k,c′ : Outputs the feature map in the position, the value of the first channel.(i, j, k)c′

The convolution operation can be seen as applying a 3 D convolution kernel to each local region
of the input data and calculating the weighted sum at each position. The activation function is
used to introduce non-linearity, enabling the network to learn more complex features. Common
activation functions include the ReLU (Rectified Linear Unit). The ReLU activation function
formula:

Yi,j,k,c′ = max 0, Yi,j,k,c′

ReLU sets the negative value to 0 and preserves the positive values, increasing the nonlinear
representation power of the model. The pooling layer is used to reduce the spatial dimension of
the data while retaining important features. Common pooling operations include maximum
pooling (max pooling) and average pooling (average pooling). The size of the pooling core is the
maximum pooling operation formula:pD × pH × pW。

Yi,j,k,c′ = max
d,ℎ,w

 Xi+d−1,j+ℎ−1,k+w−1,c′

The pooling operation reduces the size of the data by taking the maximum or average within
each pooling region while retaining the main features. The fully connected layer flatten the
multi-dimensional feature graph into a one-dimensional vector and linearly transforms the weight
matrix and bias. Full connection layer formula:



z = W ⋅ x + b
xWb Among them, is the input vector after leveling, is the weight matrix, is the bias. The fully
connected layer enables further combination and abstraction of features through linear
transformation and activation function. For the classification task, the last layer is usually the
Softmax layer, converting the network output into class probabilities. Softmax Formula:

pi =
exp  zi

j=1

N
 �  exp  zj

NpiiWhere, is the number of categories, is the probability of the first category. The Softmax
layer transforms the output of the model into a probability distribution suitable for
multi-category classification problems.3D convolutional neural networks effectively extract
spatial features in 3 D data by performing convolution operations in 3 D space. Its main steps
include 3D convolution, activation function, pooling, full connectivity, and Softmax layers.
Through these steps, 3D CNN can process 3 D images, videos and point cloud data, realizing
tasks such as classification, segmentation and detection. Detailed convolution and pooling
operation formulas show how the 3 DCNN slides convolutional and pooling kernels on 3 D data
to extract and aggregate features.

3.2|PointNet model
PointNet Is a deep learning network structure for processing point cloud data, built by Charles R.
As presented in 2017 by Qi et al. Its core idea is to directly feature extraction from each point in
the point cloud, and then aggregate the features of all points through global pooling operation to
achieve a unified description of the whole point cloud. The advantage of PointNet is its ability to
handle irregular point cloud data without any complex data preprocessing, such as voxel or grid,
which gives it high flexibility and efficiency in handling tasks such as 3D object recognition,
classification and segmentation. Moreover, the design of PointNet allows it to capture the global
structural information of point cloud data, which is essential for understanding complex 3D
scenarios. Although PointNet may encounter performance bottlenecks when dealing with
large-scale point clouds, its innovative network structure and processing methods lay the
foundation for subsequent point cloud deep learning research. The specific structure is shown in
the figure below.

Let the input point cloud be, for each point. P = p1, p2, …, pn pi ∈ ℝ3 Then, to make the
model insensitive to the arrangement of point clouds, the input point clouds are first
geometrically transformed. The transformation is learned from a small neural network (TNet):

T(P) = T p1, p2, …, pn ∈ ℝ3×3

The input-transformed point cloud is:
pi

′ = T ⋅ pi

pi
′For each transformed point, a multilayer perceptron (MLP) was applied to extract the features:

fi = MLP  pi
′ = σ W2 ⋅ σ W1 ⋅ pi

′ + b1 + b2

W1, W2b1, b2σWhere, is the weight matrix, is biased, is the activation function (such as ReLU).
Use symmetric functions (such as max pooling) to aggregate features for each point into global



features:
g = MAX  f1, f2, …, fn

Where, MAX is the operation that takes the maximum value for each feature dimension. Further
transform the global features to ensure that they are invariant to the rotation and translation
transformations:

g′ = T(g) ∈ ℝk

Classify the global features or segment the features at each point:
Output =MLP g′

3.3|PointNet++ model
PointNet + + is an extension and improvement of the original PointNet architecture, proposed
by Qi et al. in 2017. It aims to solve the problem of PointNet in processing local structural
information, and enhance the capture of local convolution features by introducing the concept
of graph convolutional network (GCN). The core idea of PointNet + + is to divide the point
cloud data into multiple local regions, then perform local feature extraction within each local
region, and finally combine these local features with global features to obtain a more
comprehensive representation of the point cloud. PointNet + + achieves this through a strategy
called "sampling + aggregation". First, it randomly samples a set of points as the central points
of the region, and then, for each central one, finds its k-nearest-neighbor points to form a local
region. Then, the feature of each local region is extracted using a shared MLP (multi-layer
perceptron), a process called aggregation. Through multiple sampling and aggregation, PointNet
+ + is able to capture the local features of point clouds from different scales. Another important
feature of PointNet + + is its ability to handle point cloud data with different densities, because
its local feature extraction does not depend on a fixed grid structure. This flexibility allows
PointNet + + to perform well in handling a variety of 3D shapes and scenes, whether in
classification, segmentation, or detection tasks. Overall, PointNet + + provides a powerful and
efficient method for deep learning analysis of point cloud data, and the specific structure is
shown in the figure below.

lPl = p1, p2, …, pnl Pi,lLet the point cloud data of the first layer be. For each local region, the
PointNet was applied for feature extraction:

fi,l = PointNet  Pi,l ∀i ∈ 1,2, …, nl
Pi,lSpecifically, for each local region, T-Net was first applied to transform the region:

T Pi,l = T pi,1, pi,2, …, pi,k ∈ ℝ3×3

Transformed point cloud:

pi,j
′ = T ⋅ pi,j

pi,j
′ The MLP is then applied to each point to extract the features:

fi,j = MLP  pi,j
′

Then use the max pooling to aggregate the local features:



fi,l = MAX  fi,1, fi,2, …, fi,k
The local features of each layer are aggregated to gradually form the global features.

gl = Aggregate function f1,l, f2,l, …, fnl,l
Feature extraction and fusion at different scales to improve the ability of the model to capture
features of different granularity.

g = Aggregate function g1, g2, …, gL
Classified or segment the fused features:

Output =MLP(g)

Suppose we have a point cloud of data containing points, and the coordinates of each point
are.Pnpi Then the input transform:

pi
′ = T ⋅ pi

Feature extraction was then performed:

fi = σ W2 ⋅ σ W1 ⋅ pi
′ + b1 + b2

lowed by global feature aggregation:
g = MAX  f1, f2, …, fn

Then perform the output transform:
g′ = T(g)

Finally, make the classification / segmentation:
Output =MLP g′

4|Results and Discussions

4.1|Data set visualization

First, this paper constructs different types of spatial point cloud data, including spherical, cubic,
and flat point clouds. These point cloud data are used to simulate the 3 D structures in practical
applications. For each type of data, we generated point clouds using specific mathematical
methods:

1. Spherical point cloud: points that are evenly distributed on the sphere. Using the spherical
coordinate system, the points on the sphere were converted to Cartesian coordinates.

2. Cube point cloud: points that are evenly distributed within the cube. The coordinates of the
randomly generated points are within the boundaries of the cube.

3. Planar point clouds: points that are evenly distributed on a plane. Compliance to the plane
equation by generating a random point and adjusting its position.

Subsequently, we used the 3D mapping function in the `matplotlib` library to visualize these
point cloud data. Each type of point cloud data was assigned a different color to differentiate in
three dimensions, as shown in the figure below.

4.2|The voxel of the data



The voxization of data is a technique for converting scattered point cloud data into a regular 3 D
grid structure. This approach first requires the creation of a grid of voxels with a fixed size,
consisting of many small cubes, each called a voxel. The initialization of the voxel mesh is usually
a full zero array, where each voxel represents a volume cell in the grid, and the initial values of all
voxels are set to zero. During voxelization, each point in a point cloud first needs to map its
coordinates within the size range of the voxel mesh through a normalization operation. The
normalized coordinates were then converted to an integer index in the grid, ensuring that each
point could be accurately positioned to the corresponding voxel.

Next, each point is mapped to the corresponding position in the voxel grid by walking through
all the points in the point cloud, and the count value for that location is updated. This process
involves rounding the coordinates of each point or other forms of quantification to ensure that
they can exactly correspond to the integer coordinates in the grid. As the traversal proceeds, the
voxel grid is gradually populated, and the value of each voxel reflects the number of its internal
points, thus forming a voxelized representation of the point cloud data. This representation not
only provides a regular geometry for point cloud data, but also enables subsequent 3D-CNN
models to process the data more efficiently, as these models often require regular input formats
for convolutional operations and other deep learning tasks.

The advantage of voxelization technology lies in its ability to transform the irregularities and
disorder of point cloud data into a regular grid structure, which makes the data more suitable for
the processing of deep learning models. The 3D-CNN model enables this structured data for
feature extraction and pattern recognition. By applying the convolution operation on the
voxelized data, the model can learn the spatial features that capture both local and global
information in the point cloud data. Furthermore, voxelization also helps to reduce the storage
requirements of the data, as it converts continuous point clouds into discrete voxels, each of
which only needs to store limited information. While improving the computational efficiency, it
also provides a new perspective for the analysis and understanding of point cloud data.

4.3|3 Point-set partitioning of the D-CNN model

The constructed 3D convolutional neural network (3D-CNN) first accepts as input the voxelized
point cloud data, which is organized into a three-dimensional grid of fixed size. The preliminary
convolutional layer of the network uses 32 convolution kernels of 3x3x3 to extract the basic
spatial features in the input data and introduce a nonlinearity through the ReLU activation
function. Subsequently, a maximum pooling layer of 2x2x2 was used to reduce the spatial
dimension of the feature map and to reduce the computational complexity while retaining
important feature information. The following convolution layer further extracts the deeper
features using 64 convolution kernels of the same size. Apply the maximum pooling layer again
to further reduce the spatial dimension. Subsequently, the network continues to process the data
with 128 convolutional kernels, capturing more complex spatial relationships and further
squeezing the feature graph through the maximum pooling layer. The leveling layer levels the
multi-dimensional feature graph into a one-dimensional array for input to the fully connected
layer. The fully connected layer combines these extracted features and is further processed
through 512 neurons, and finally the output layer generates a probability distribution for each
class using the Softmax activation function. This network structure allows the model to
efficiently extract and learn spatial features from the voxel grid data, ultimately achieving efficient
classification prediction, and the specific network structure is shown in the table below.

Layer (type) Output Shape Param

conv3d_4 (Conv3D) (None, 30, 30, 30, 32) 896
max_pooling3d_3 (MaxPooling3D) (None, 15, 15, 15, 32) 0
conv3d_5 (Conv3D) (None, 13, 13, 13, 64) 55,360
max_pooling3d_4 (MaxPooling3D) (None, 6, 6, 6, 64) 0



In the model training and evaluation section, we first compiled the constructed 3D-CNN model.
The compilation process includes selection optimizer, loss function and evaluation metrics. In
doing so, we used the Adam optimizer, an adaptive learning rate optimizer that effectively adjusts
the learning rate to speed up convergence. The loss function selects `sparse _ categorical _
crossentropy`, suitable for the multi-category classification task, computing the error between the
model predictions and the true labels. The evaluation metric selected `accuracy` to measure the
accuracy of the model during training and validation. During the model training phase, we used
the voxelized data to train the model, setting a certain number of training rounds (epochs) and
batch size (batch_size). During training, the model gradually adjusts its internal weights to
minimize the value of the loss function and improve the classification accuracy. To track the
performance during training, we recorded the accuracy and loss values of each round and plot
these metrics varying with training rounds. In this way, the learning progress and performance
changes of the model during the training process can be intuitively observed, as shown in the
figure below.

In the model evaluation phase, we evaluated the trained model using the test set. By calculating
and displaying the classification report of the model, we can obtain the precision, recall, and F1
score for each category, as shown in the following table.

performance
index

Accuracy Precision Recall F1 Score

numeric value 1 1 1 1

In addition, we generated a confusion matrix to visualize the classification effect of the model on
individual categories. The confusion matrix shows the match between the model prediction
results and the actual labels, helping to analyze the classification performance of the model and
identify possible misclassification patterns. These evaluation results provide a comprehensive
understanding of the model performance, which will help us to further optimize and adjust the
model.

conv3d_6 (Conv3D) (None, 4,4,4,128 ) 221,312
max_pooling3d_5 (MaxPooling3D) (None, 2, 2, 2, 128) 0
flatten_1 (Flatten) (None, 1024) 0
dense_2 (Dense) (None, 512) 524,800
dense_3 (Dense) (None, 10) 5,130



Confusion Matrix (Confusion Matrix) is a performance evaluation tool commonly used in
classification problems, especially in supervised learning. It is a table for visualizing the
differences between the model prediction results and the actual labels. The confusion matrix
usually contains the following four main elements:
 True example (True Positives, TP): the number of samples that the model correctly

predicts as positive classes. For example, in dichotomous problems, this means that the
model correctly identifies samples that are actually positive as positive.

 False positive case (False Positives, FP): number of negative samples that the model
incorrectly predicts as positive. This is also called a type I error or a type I error in
dichotomy problems.

 True negative cases (True Negatives, TN): the number of samples that the model has
correctly predicted to be negative. In the dichotomous problem, this means that the model
correctly identifies samples that actually are as negative.

 False negative cases (False Negatives, FN): number of positive samples that the model
falsely predicts as negative. This is also called type II error or type II error in dichotomy
problems.
The confusion matrix can see that the 3D-CNN network constructed in this paper can

complete the division of point cloud datasets in space.

4.4|Point net Model point set division
The constructed PointNet model consists of three main parts: input transformation network
(input transform network), feature transformation network (feature transform network), and
classification network (classification network). First, the input transform network processes the
input point cloud data and transforms it into a space more suitable for subsequent processing.
This network consists of a series of convolutional layers and maximum pooling layers used to
extract local features and maximum pooling layers to aggregate global features. Next is the
feature transformation network, this part of the network is similar to the input transformation
network structure, but used to transform the feature space. The output of the feature
transformation network is a feature transformation matrix used to transform the local features of
the input to make it more discriminative in subsequent processing. Finally, the classification
network, which classifies the transformed features through a series of convolution layers,
maximum pooling layers, and fully connected layers. The convolutional layer was used to further
extract the features, and the fully connected layer was used for the final classification decision.
The entire network structure utilizes max pooling operations to aggregate local features into
global features to enable efficient classification of point cloud data. The key to the design of the
network structure lies in the transformation network of input and feature, which can effectively
deal with the disorder and transformation invariance problems of point cloud data.



During the model training process, the PointNet model first uses the cross-entropy loss function
(CrossEntropyLoss) to measure the difference between the prediction results and the true labels.
The optimizer uses the Adam optimizer to minimize the loss function by adjusting the model
parameters. For each training cycle (epoch), the model enters into the training mode and
trathrough the training dataset. For each batch of data, the gradient was first zeroed, and then
the input data was propagated forward through the PointNet model to obtain the predicted
results. The loss is then calculated, and the model parameters are updated by backpropagation. At
the end of each epoch, the mean loss and accuracy were calculated. During training, the average
loss and accuracy of each epoch were recorded to facilitate subsequent analysis and visualization.
The average loss reflects the error of the model on the training data, and the accuracy rate
represents the classification performance of the model on the training data. After training, the
model performance was evaluated and the training effect was visually demonstrated by
calculating the confusion matrix and drawing the loss and accuracy curves. The confusion matrix
shows the correct versus wrong situation of the model classification, helping to understand how
the model performs on different categories. The loss curve and the accuracy curve show the
change trend of the performance of the model in the training process, and help to judge whether
the model converges and whether there is overfitting or underfitting phenomenon. The results
are shown in the figure below.

It can be seen from the figure that the model has converged in the second generation, and the
classification accuracy has reached 100%. Meanwhile, the following table also gives the final
classification performance index of the model.

performance
index

Accuracy Precision Recall F1 Score

numeric value 1 1 1 1

It can be seen from the above classification performance index that Point net also completes the
division of the point cloud data set in space, but its division speed is much faster than CNN. The
following figure also gives the confusion matrix of classification.



5|Conclusion
This study successfully constructed and evaluated two models: 3D-CNN and PointNet. The
proposal of these two models aims to meet the rapid growth of the scale and complexity of
spatial data in the big data era, as well as the challenges faced by traditional spatial data division
methods when dealing with large-scale, high-dimensional data. The 3D-CNN model uses
voxelization techniques to transform continuous point cloud data into discrete 3 D grids, thus
providing structured data input to the convolutional neural network. Through multi-layer
convolution and pooling operations, 3D-CNN is able to effectively extract spatial features of
point cloud data and achieve high accuracy predictions in classification tasks. This process not
only improves the efficiency of data processing, but also enhances the ability of the model to
express the spatial features through the powerful feature learning ability of deep learning. The
PointNet model uses an innovative method to deal with the disorder and transformation
invariance problems of point cloud data. Through the collaborative work of the input
transformation network, the feature transformation network and the classification network,
PointNet can directly process the raw point cloud data without prior complex preprocessing
steps. This end-to-end processing simplifies the architecture of the model while maintaining
sensitivity to the complex structure of point cloud data. The cross-entropy loss function and the
Adam optimizer were used for both models during model training. The cross-entropy loss
function provides the standard for the model to measure the difference between the prediction
and the actual labels, while the Adam optimizer accelerates the optimization process of the
model parameters through adaptive learning rate adjustment. Through the back propagation
algorithm, the model is able to continuously learn and adjust the internal parameters to minimize
the loss function and improve the classification accuracy.

The evaluation results show that the 3D-CNN model performs well in both classification
accuracy and processing speed, thanks to its efficient convolution and pooling operations, as well
as the deep exploration of spatial features. However, the PointNet model shows excellent
classification performance with its end-to-end processing power and its robustness to the
disorder of point cloud data, and its classification accuracy also reaches 100%. This result not
only validates the potential of the PointNet model for processing point cloud data, but also
shows its reliability in practical applications. By analyzing the confusion matrix and performance
indicators, the results further verify the validity and robustness of the proposed method. The
confusion matrix clearly shows the classification effect of the model on each category, while the
performance metrics comprehensively evaluate the classification performance of the model from
multiple dimensions including precision, recall rate and F1 score. These evaluation methods
provide an important reference basis for the optimization and improvement of the model. In



conclusion, the deep learning-based spatial vector point set division model proposed in this study
shows important value at both the theoretical and practical levels. These models can not only
improve the efficiency and accuracy of spatial data processing, but also bring new technical ideas
and solutions to the field of spatial data analysis through the application of deep learning
technology. With the continuous development and optimization of technologies, these models
are expected to play a greater role in intelligent transportation systems, environmental monitoring,
urban planning and many other fields, promoting the innovation and development of related
technologies.
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