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Abstract

Existing deep learning-based image fire detection algorithms require training the model with a
large number of diverse image datasets and accurate annotations to achieve high accuracy and
strong anti-interference capabilities. However, in the field of fire detection, there is a lack of
sufficiently rich datasets of real fire scenes to train the detection models, leading to unreliable
detection results. In this paper, we propose a new flame image generation method that aims to
enhance the efficiency and adaptability of fire detection systems, particularly when the number of
samples is unbalanced. By constructing extensive datasets containing different environments (e.g.,
factories, warehouses, and forests), we address the practical challenges of safety control and fire
initiation.

Our approach is based on two main networks: the flame generation network and the hybrid
network. The flame generation network utilizes the SCGAN technique to generate diverse flame
images by controlling the shape of flames based on the input reference information. The hybrid
network synthesizes fire images from different scenes into an improved DDPM to create realistic
images by fine-tuning textures and styles. Our approach has three main advantages: the ability to
control the generated flame images, the preservation of high-quality background details, and
training on real datasets, making the generated images suitable for engineering application
scenarios.
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1. Introduction

Generating fire imagery is an essential technique for mitigating the disparity in sample
counts between images depicting fires and those that do not, a common issue in
numerous deep learning applications. To bolster the efficacy and adaptability of fire
detection systems, it is imperative to compile extensive datasets from diverse
environments including factories, warehouses, and forests. Despite the practical hurdles of
safely controlling and initiating fires, the expansion of the fire image database through
simulated images is a pressing issue that needs to be addressed.

Existing deep learning-based image fire detection algorithms need to train the model with
a large number of rich image datasets and accurate annotations in order to obtain a target
detection model with high accuracy and anti-interference capability.

The paper presents an innovative approach to producing flames by manipulating the
properties of fire. It draws inspiration from several existing studies and is meant to be
flexible enough to function in different settings. The model suggested in this study
consists of two networks. The primary contributions are summarized as follows:

1.A flame generation network is proposed to generate a variety of flames using SCGAN
and to synthesize fire pictures of various settings by regulating the shape of the result
based on any input provided as a reference.

2.In order to generate realistic images by fine-tuning the texture and style of the hybrid
region, a hybrid network is proposed to synthesize fire pictures from various scenarios
into an enhanced DDPM. It is capable of producing fire samples for engineering
application scenarios that can be utilized by target detection algorithms.

The proposed method has three main advantages. First, the fire in the generated fire
kernel can be controlled by SCGAN to generate various fire images that cannot be done
by existing methods, and to realize the style conversion between fire-free and fire scenes.
Second, the flame and background images are further fused by the improved DDPM
network, and high quality background details are preserved in the generated images.
Finally, since the model is trained on a real dataset, the generated images can be used to
generate fire samples for engineering application scenarios that can be used by target
detection algorithms.

2. Related Work

Generative image modeling has a rich history in the field of computer vision[31, 10, 15]
and has undergone significant advancements in numerous directions during the deep
learning era[11].Variational auto-encoders[17], generative adversarial neural networks
(GAN) [22], and diffusion models[25] are three significant developments that have
substantially improved the learning and modeling capabilities in the deep learning era.



Generative adversarial learning has experienced exponential growth[21, 22, 3, 16, 9],
despite the fact that numerous GAN models continue to be challenging to train. VAE
models[17] are simpler to train; however, the resulting image quality is frequently illegible.
In recent years, diffusion generative models [25, 13, 26, 7] have become increasingly
popular due to the exceptional quality of the images they produce[23]. Although
generative diffusion models possess exceptional modeling capabilities, they continue to
encounter obstacles in both training and synthesis.

Conditional Generative Adversarial Networks (CGAN) were first proposed by Mirza and
Osindero[20] and included a conditional variable \(c\) to both the generator and
discriminator, therefore influencing the data generating process by this extra knowledge.
StarGAN[6] enabled simultaneous training of many datasets within a single network,
therefore addressing the difficulty of picture translation across several domains. Facebook
AI expanded Instance-conditioned GAN[5] for class-conditional generation, enabling the
control of produced picture semantics by means of the suitable mix of examples and class
labels. By defining a target color histogram feature, Afifi et al. [1] managed the colors of
GAN-generated pictures using an unsupervised method.

Effective integration of flames into a picture requires a model addressing three main
problems. It must first guarantee that flame properties like color and form are both varied
and controlled. Second, the produced flame picture ought to be as realistically perceptually
as feasible. This implies that the color of the flame, hazy edges, smoke, and reflections on
surrounding objects should quite match actual circumstances. Third, the model should
move smoothly between the flame and the general scene.

Image-to-image (I2I) translation can be implemented to resolve the aforementioned
concerns. Many I2I translation frameworks, including super-resolution[18, 4], semantic
synthesis[19, 28], photo enhancement[28, 14], and photo editing [8, 24], have been
extensively employed as a result of the recent implementations of GANs[12].
Nevertheless, these frameworks are not appropriate for the purpose of augmenting scenes
with blazing flames due to the following reasons. Traditional I2I methods frequently
impose a common limitation in which translated images tend to maintain their style and
content[19, 28, 22], thereby restricting the variation of shape and color in generated flame
images. In addition, the irregularity of latent codes renders image translation unpredictable,
despite the fact that certain methods [30] can decompose color and texture features of
images into a latent space. Furthermore, methods that depend on explicit codes to
regulate image features frequently induce color shifts and background distortions [2]. The
resolution of background images is also not maintained by these models, resulting in
substantial discrepancies between the flame merging region and the overall scene.

3. Method

3.1 Cycle Generative Adversarial Networks

CycleGAN (Cycle-Consistent Generative Adversarial Network) [29] is designed to learn
mapping functions between two distinct domains X and Y . It is particularly useful in



scenarios where paired training data (direct correspondences between images in the two
domains) is not available. The training samples for CycleGAN consist of two sets: {��}1

� ,
where �� ∈ X, representing a collection of images from domain X , and{��}�=1

� , where
�� ∈ �, representing a collection of images from domain Y. The data distributions for the
images in the two domains are �~ �����(�) and �~�����(�) .As illustrated in Figure 1,
CycleGAN consists of two main components: two mapping functions and two adversarial
discriminators. The mapping functions are G : X →Y , which learns to map images from
domain X to domain Y , and F : Y → X, which learns to map images from domain Y
to domain X. The adversarial discriminators are �� and �� . �� is trained to differentiate
between real images from domain X and fake images translated from domain Y by the
generator F , ensuring that the translated images{F(y)} look similar to the real images x
in domain X . �� is trained to differentiate between real images from domain Y and fake
images translated from domain X by the generator G , ensuring that the translated
images {G(x)} look similar to the real images y in domain Y. CycleGAN employs two
primary types of losses to train the model effectively: adversarial losses and cycle
consistency losses. Adversarial losses help in aligning the distribution of the generated
images with the distribution of the data in the target domain. The adversarial loss for the
generator G ensures that the translated images {G(x)}are indistinguishable from the real
images y , and similarly, the adversarial loss for the generator F ensures that the translated
images {F(y)} are indistinguishable from the real images x. Cycle consistency losses
ensure that the mappings G and F do not contradict each other. Specifically, for any
image x from domain X, applying G followed by F should ideally bring the image back
to the original domain X , i.e., F(G(x)) ≈ � , and for any image y from domain Y ,
applying F followed by G should ideally bring the image back to the original domain Y,
i.e., G(F(y))≈ �. By optimizing these losses, CycleGAN achieves effective and consistent
image translation between two domains, even in the absence of paired training data.

Figure 1: CycleGAN structure；

3.2 Improved Cyclegan Networks

3.2.1 Globally Attachable Residual Networks

Our suggested residual network structure combines self-attention learning with context
mining into a single design, hence enhancing the network's capacity to collect contextual



information as well as the richness of feature representation. By means of a combination
of the localized static context with the self-attention-guided dynamic context, so
improving the ability of feature extraction by addressing the defects of the original residual
network limited to extracting features in a small window, increases the global field of view
of feature extraction, and enhances the network's capacity to understand the global
dependencies of the input data.Figures 2 depict the CT_Blocks network architecture.

Figure 2 CT_Blocks network structure diagram

The CT_Blocks network structure, in addition to the two 3×3 convolutional layers (Conv)
inherited from the original residual network, adds a Contextual Transformer (CoT), which
works by taking the feature map X∈[C,W,H] ,C is the number of channels, H is the height
and W is the width. The input feature map X is first processed by a 3×3 convolution to
encode static context information for each spatial location of the key (key). This produces
a static context representation �1 .The input feature map X is spliced with the static
context representation �1 . to form the query(Q) and key(K).The dynamic multi-head
attention matrix is then learned by two consecutive 1$\times$1 convolutions (the first
witha ReLU activation function and the second without). Using the learned attention
matrix, the values (V) in the input feature map X are weighted and summed to aggregate
information from all other locations to obtain the dynamic context representation �2 ,
which fuses the static context representation �1 . with the dynamic context representation
�2 . This is usually achieved by global average pooling of the channel dimensions and a
soft attention mechanism to adaptively aggregate the two kinds of context information.
The fused context information is used as the output �' of the CoT block, and this output
feature map �' contains rich static and dynamic context information. In order to increase



the multi-scale spatial expression capability, �' is again passed through a 3×3
convolutional layer to obtain the output feature map Y, whose expression is:

� = � + ���� ��� � + ���� ���� � #(1)

3.2.2 generator network structure

The generator model in this study utilizes an Auto-Encoder+Skip-connection network
structure. The residual network module deviates from the original residual network
structure and instead employs the CT_Blocks structure proposed in this paper. This
unique structure provides global connectivity, addressing the limitations of the original
residuals that can only extract features locally. As a result, the model is capable of both
global feature extraction and multi-scale invariance, leading to improved image quality.
The structure of the generator network, as depicted in Figure 3, is presented in this paper.

Figure 3 Generator network structure diagram

The dark blue module is the mirror fill layer, which will fill three pixel matrices of mirror
content around the image; �� :W×H×C indicates that it is currently the ith layer of
convolution, through which the width of the output feature map is W, the height is H,
and the number of channels is C. The yellow module is the convolution operation with
convolution kernel size 3 and step size 2. The red module is an inverse convolution
operation with convolution kernel size 3 and step size 1/2, which is used to send the
convolved feature map larger. The pink module is the 3 consecutive CT_Blocks structure
to give the extracted features a global view. The blue module is the IN layer, which
normalizes the feature map to prevent overfitting; the dashed part is to fuse the low-level
features obtained after convolution with the high-level features at the same resolution in
the model, so that the utilization of feature information in each layer of the model can be
improved.

In generating fire images, the network structure using Auto-Encoder and Skip-connection
can significantly improve the fidelity and diversity of the generated images.Auto-Encoder
can accurately capture the detailed features of the fire images, while Skip-connection helps
to merge the features at different scales to enhance the model generalization capability.



This structural design not only improves the stability during the training process, but also
helps to generate high-quality fire images with complex scenarios and dynamic changes,
which is helpful for security-restricted environments that do not allow starting fires to
capture fire videos or testing fire detection algorithms. Improving the impact and
effectiveness of fire detection algorithms in different environments.

Auto-Encoder, through its encoder and decoder architecture, is able to learn key features
in fire images, such as the color, shape, and dynamics of the flames, as well as smoke
dispersion patterns. This helps the generator to accurately reproduce the visual
characteristics of the fire when creating the image.Skip-connection allows the model to
fuse features at different levels, which means that the network can capture the details of
the fire at both the macro- and micro-scales, thus generating a richer and more realistic
fire scene. Also by creating direct paths in the network, it helps the gradient to propagate
more efficiently during the training process, which reduces the problem of gradient
vanishing in deep network training, thus improving the training efficiency and stability of
the model. Since Auto-Encoder learns a compressed representation of the data, this helps
the model capture the generalized features of the fire images, allowing the generated
images to be not only limited to specific fire cases, but to adapt to a wide range of
different fire scenarios. Multiple representations of fire images can also be learned, which
provides a basis for generating diverse fire scenarios. Combined with Skip-connection's
multi-scale feature fusion, it is possible to generate a variety of fire images ranging from
light smoke to violent flames.

3.2.3 Discriminator Network Structure

The discriminator network, employing an Auto-Encoder network structure instead of the
original structure, offers a key advantage: the training of the discriminator is no longer
limited by the constraints of the generator. This allows for the initial training of the
discriminator, which in turn stimulates the training of the generator through optimization.
This addresses the issue of training imbalance in the original model. The architecture of
the discriminator network is shown in Figure 4.



Figure 4 Discriminator network structure diagram

In fire generation, CycleGAN network with Auto-Encoder instead of the original
discriminator structure can significantly improve the realism and detail richness of the
generated images.The introduction of Auto-Encoder enables the discriminator to be
trained independently of the generator, which helps the discriminator to more accurately
extract the features of the fire images, such as dynamic changes of the flames and smoke
diffusion patterns, thus improving its ability to distinguish between real and generated
images. At the same time, training the discriminator independently also improves the
stability of the training process, allowing the generator to focus more on producing high-
quality fire images. In addition, the Auto-Encoder's multi-scale learning capability helps to
capture both micro- and macro-features of the fire, further enhancing the realism of the
generated images. This architecture also provides training efficiency gains and flexibility,
allowing the model to adapt to different fire scenarios and conditions while addressing
possible imbalances in the training process.

3.2.4 Overall Structure

Our goal is to realize the style transformation between fire-free and fire scenes by
proposing a new model-SCGAN. The model significantly improves the extraction of fire
image features by combining context mining, self-attention learning, and residual network
structure. The model employs CT_Blocks, an innovative structure that enhances the
global view of features and multi-scale invariance by fusing static contextual information
and dynamic multi-head attention matrices. In addition, the generator network utilizes
Auto-Encoder and Skip-connection structures, which not only improves the quality of the
generated images, but also enhances the generalization ability of the model. The
independently trained Auto-Encoder discriminator further improves the accuracy of the
discriminator and the stability of the training process. The goal of the whole model is to
realize the style transition from fire-free to fire-aware scenarios to support the



development and testing of fire detection algorithms, especially in safety-constrained
environments where actual ignition is not allowed.

Figure 5 Flow of flame generation and scene migration.

3.3 Denoising Diffusion Probabilistic models

Denoising Diffusion Probabilistic Models (DDPMs) [13, 25] are generative models used
for image generation through variational inference. They operate using a Markovian
process with a finite number of timesteps 'T'. The process involves two stages: the
forward process and the reverse process. In the forward process, a clean image �0 is
sampled, and small Gaussian noises with variance schedules {�1, . . . ��, } are added over
'T' timesteps, progressively corrupting the image. In the reverse process, this corrupted
image is denoised step-by-step, removing the noise added during the forward process, and
ultimately recovering the original clean image.The overall forward process and each
forward step are defined as

� �� ��−1 = � ��; 1 − ����−1, ��� # 2

= ����−1 + � 1 − ��, � ∼ � 0, � # 3

When describing noisy samples, let �� denote the noisy sample generated at timestep t ,
and \��−1 ( y_{t-1} \) represent the noisy sample from the previous timestep t-1. The
variation in these noisy samples is influenced by the variance schedules �� , which dictate
how the noise evolves over time and thus affect the overall behavior of the samples.
Given the Markovian process, where the current state depends only on the previous state
and not on the sequence of events leading up to it, the process can be effectively



represented by the initial data sample �0. Specifically, the distribution of the noisy samples
results from the sum of t zero-mean Gaussian distributions, each with its own variance
schedule. This implies that the evolution of the process can be described using the initial
sample �0 and the noise models.

� �� �0 ≔ � ��; ���0, 1 − �� � # 4

= ���0 + � 1 − ��, � ∼ � 0, � # 5

where �� = 1 − �� . In the reverse process we define the joint distribution ��(��: �)
with parameters �. Similar to the forward process, the reverse process is also a Markovian
process which is defined as follows

� �� ≔ � 0, � # 6

� ��−1 �� = � ��−1; �� ��, � , ��� # 7

To optimize network parameters � , the objective is to minimize the variational lower
bound of the negative log likelihood of the clean image distribution �0 . Training follows
the simplified objective for DDPMs proposed in [13]. During training, a timestep t is
sampled uniformly from the range T [1, T] , and the noisy sample for this timestep is
generated using equation (4), defined by

�� = ���0 + � 1 − ��, � ∼ � 0, � # 8

The network ��(.) predicts the noise $\epsilon$ in this image taking �� and t as the inputs.
The training objective is defined as,

������� ≔ ��∼ 1,� ,�∼� 0,� ∥ � − �� ��, � ∥2 # 9

�.4 Conditional Diffusion Probabilistic Models

The equations previously mentioned are intended to facilitate the generation of
images. The conditional distribution of the clean image must be modeled in order to
employ DDPMs for low-level vision tasks, such as image restoration. A straightforward
method for modeling the conditional distribution of a clean image in relation to its
corresponding degraded image has been proposed by Saharia et al. The forward process in
conditional DDPM is identical to that of the unconditional model. Random Gaussian
noise is introduced to a clear image obtained from the dataset using a randomly sampled
timestep t. The degraded image(x) is also provided as input to the neural network during
the reverse process, in addition to the chaotic image and the time t. Hence the denoising
model is defined by ��(y_t, x, t) and the reverse process is defined by



� �� = � 0, � (10)

� ��−1 ��, � = � ��−1; �� ��, �, � , ��� # 11

The mean �� ��, �, � is estimated according to,

�� ��, �, � =
1

1 − ��
�� −

��

1 − �� �
�� �,��,� # 12

3.5 Proposed method

The method and training process that we suggest are elaborated upon in this section. In
order to train our model, we implemented a multi-stage training procedure, as illustrated
in Figure 6. Given a dataset containing real flame images, we train a diffusion model, ��(.),
to perform the task of generating fire images unconditionally. Our goal is to synthesize
more fire images of the scene and generate more realistic fire images with improved
DDPM. The image generated by SCGAN may contain some noise and blur, which cannot
produce the details and texture of the flame well, and the image detail and clarity can be
significantly enhanced through the denoising process of DDPM.

Figure 6 An overview of the proposed approach

To enhance the model's robustness to distorted and blurred images, we utilize a super-
resolution approach with two distinct models: �∅ (.)for handling weak distortions and
� (.)for recovering from strong distortions. To optimize the parameter � , we sample a
noise vector � from a Gaussian distribution �~�(�, �) and generate a noisy image ��



from the clean image �0 . The parameter � is then optimized in each training iteration
using the loss function ������ , which evaluates the model's performance in reconstructing
images from their distorted versions. This process ensures that the model can effectively
recover high-quality images even from significant distortions.

For each training iteration, the parameter $\delta$ is optimized using the loss function
������ defined as follows

�� = ∥ � − �� ��, ��−����, � ∥2, � ∼ � 0, � , # 13

�� = ∥ �� ��, ��−����, � − �� ��, ��−����, � ∥2# 14

������ = ��∼ 1,� �� + ��� # 15

The term �� ensures the model focuses on accurately reconstructing the flame region
despite distortion. Parameter � is updated by optimizing the loss function ������ . Model
weights � are updated using an exponential moving average (EMA) rather than directly
through the loss function optimization.The EMA-based weight update of the weights �
using the estimated weights ∅ is performed according to the

� = �1� + 1 − �1 �# 16

In diffusion model inference, conventional methods are time-consuming, but satisfactory
results can be achieved with fewer timesteps, typically between T = 40 - 50 . Instead of
starting with pure Gaussian noise, inference can begin with a distorted, blurred image,
which helps fix rough features and improves efficiency. Let x be the distorted input
image and �� the inference image after t forward steps. The process starts with Gaussian
noise at t = T and refines the image from t = �1 to T . This approach captures flame
features effectively and restores details such as edges and texture, resulting in a high-
quality image.

4. Experiments

4.1 Implements Details

In our experiments, we use FireNet , the Fismo dataset and the dataset from the self-
constructed dataset as the fire dataset. In addition, we sampled and mixed Arnaud
Rougetet1's Google Landmark v2 dataset, Landscape Pictures dataset and self-built
dataset as clean dataset [27].

Table 1. Details of the datasets for training;

Dataset Description



FireNet 46 fire videos

Fismo dataset FireVid,RESCUER Video Dataset

Self-constructed dataset 125 experimental flames and smokevideos

Figure 7 An overview of the proposed approach

4.2 Quantitative Evaluation Metrics

A quantitative evaluation is conducted in this paper on three dimensions: the performance
of computer vision algorithms, the similarity between synthesized images and actual
photographs, and subjective user feedback. The Fréchet Inception Distance (FID) is
employed to assess the similarity between the synthesized and actual images. This metric is
obtained by feeding the synthesized images into a pre-trained Inception model and
subsequently computing the FID using the features extracted from the penultimate layer.
The FID score is indicative of the quality of detail and variety in the synthesized images,
as well as the resemblance between the two. A lesser FID score suggests that the image
synthesis quality is preferable.

For the computer vision component, the paper employs the ResNet accuracy and the
confidence level from the YOLOv8 model. The ResNet accuracy measures how well the
fire and non-fire categories are distinguished in the synthesized images by a trained
ResNet network, with higher accuracy signifying more convincing image authenticity. The
YOLOv8 confidence indicates the likelihood that an object within the synthesized image
is identified as fire, as determined by a trained YOLOv8 network. A higher confidence
score suggests a more realistic depiction of the image, particularly in the portrayal of fire
halos and reflections.



The user evaluation involves a group of 10 users who are tasked with choosing the image
with the most effective synthesis from a collection created by various networks. The score
for each network is calculated as the proportion of top-performing images synthesized by
that network relative to the total number of images synthesized. The evaluation is
bifurcated into global and local assessments. Globally, users focus on the overall
authenticity of the image composition, while locally, they concentrate on the specifics of
fire halo and reflection generation.

4.3 Qualitative Evaluation

The test sets and prediction sets were the subjects of the qualitative evaluation in this
paper. The background and flame position of the test sets were identical to those of the
training sets, but the flame was distinct. The actual images of the test sets were available.
The background, flame, and flame position of the prediction sets were all distinct from
those of the training sets, and the actual images were unknown.

Figure 8 Comparison chart of experimental results

An illustration of the experimental outcomes is illustrated in Figure 8. The CycleGAN
synthetic image's reflection regions are arbitrarily larger or smaller than the actual image,
as illustrated in Figure 8. The flame halos and reflections in the Pix2pix synthesized image
are relatively indistinct, which is a departure from the actual image. The SC-GAN
synthesized images exhibit relatively large flames with distinct boundaries between
reflections and background, but they differ from the actual images. Our model's flame size
and reflection are more reasonable and more consistent with the aesthetics of human
vision.

4.4 Quantitative Evaluation

The article conducted comprehensive testing on the images synthesized by different
networks, including FID values, ResNet accuracy, YOLOv8 confidence, and user
evaluations, with the results summarized in Table 1. In the comparison of FID values, it
was found that the two-stage network structure proposed in this paper, with the lowest



FID value of 28.65, outperformed other networks. This indicates that the images
synthesized by this structure are superior in terms of the realism, clarity, and diversity of
halos and reflections. Further confirmation came from the evaluation of computer vision
algorithms, where the two-stage network structure achieved ResNet accuracy and
YOLOv8 confidence levels of 0.9568 and 0.7539, respectively, both superior to other
networks, demonstrating that the synthesized images are visually capable of "misleading"
fire classification and recognition algorithms.

Table2. Quantitative evaluation results;

CycleGAN Pix2pix SC-GAN Our model

FID 47.1 40.29 48.52 28.46

Computer vision 0.7778 0.7228 0.9105 0.9568

Acc conf 0.6067 0.5788 0.6818 0.7539

User evaluation 0.126 0.095 0.125 0.682

Global local 0.027 0.036 0.179 0.654

In terms of user evaluations, whether considering the overall authenticity of the images or
assessing the details of the flame halo and reflections, users generally preferred the images
synthesized by the two-stage network structure proposed in this paper. This reflects that
the images synthesized by this structure not only align more with human visual aesthetics
but are also more likely to "deceive" human visual judgment.

In conclusion, based on all test results, it can be determined that compared to other
synthesis methods, the two-stage network structure proposed in this paper has a distinct
advantage in the quality of synthesized flame images.

5. Conclusions

The article presents a novel approach to create fire pictures to solve the uneven sample
counts between fire and non-fire images in deep learning applications. The approach
comprises of two networks: a hybrid network and a flame generating network based on
the production of fire properties. By means of form of the outputs depending on any
input given as a reference, the flame generating network synthesizes fire pictures of
various circumstances and generates a range of fire images using SCGAN technology.



Conversely, by optimizing the texture and style of the hybrid area, the hybrid network
synthesizes fire pictures from many situations into an upgraded DDPM to provide
realistic visuals.

The method has three main advantages:

1. The flame images generated by controlling with SCGAN can achieve various fire image
generations that existing methods cannot, as well as style conversion between fire-free and
fire scenes.

2. The flame and background images are further fused by the improved DDPM network,
and high-quality background details are preserved in the generated images.

3. Since the model is trained on a real dataset, the generated images can be used in
engineering application scenarios for target detection algorithms.

Furthermore, the article also conducted experimental verification of the proposed method.
Through quantitative and qualitative assessments, the results show that the two-stage
network structure proposed in this paper has a clear advantage in the quality of flame
image synthesis. Test results using FID values, ResNet accuracy, YOLOv8 confidence,
and user evaluations indicate that the method proposed in this paper is superior to other
methods in generating realistic, clear, and diverse flame images.

In summary, the method proposed in this paper not only enhances the expansion
capability of the fire image dataset but also helps to improve the effectiveness and
adaptability of fire detection systems by generating high-quality fire samples, especially in
environments where actual ignition is not allowed to capture fire videos or test fire
detection algorithms.
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