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Abstract

At present, some urban water plants in China have started using chloramine disinfection. So how
to determine whether the disinfected water is drinkable? This article collected a water quality
prediction data, including indicators such as chloramine and trihalomethanes. Firstly, descriptive
statistics and Pearson correlation analysis were conducted between the data of chloramine and
trihalomethanes and the target variable (whether it is drinkable). It is known that water quality
cannot be judged solely based on these two indicators, so more indicators such as pH value will be
used. In order to establish a more accurate prediction model, the dataset is first preprocessed,
including statistical analysis of missing values, determination of box plot outliers, and filling with
KNN algorithm. Then, feature engineering is performed, including Yeo Johnson transformation,
correlation analysis, and calculation of Shap values. Subsequently, the processed data was input
into the established Stacking, Voting, and attention based CNN-LSTM classification prediction
models. Random search and cross validation were used to train each model, resulting in the
optimal hyperparameters for each model. The relevant evaluation indicators for each model were

calculated to measure its accuracy.
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1| Introduction

With the global population increasing and industrial activities expanding, ensuring the safety of
drinking water has become a critical issue in environmental science and public health. Water
disinfection is essential for safe water supply, but traditional methods like chlorination have
associated health risks due to by-products such as trihalomethanes (THMs), which negatively
impact human health over the long term. Despite its widespread use due to low cost and simplicity,

chlorination's potential carcinogenic and toxic by-products necessitate safer alternatives.

Chloramine disinfection has emerged as a promising solution, effectively reducing THM
formation and minimizing the chlorine taste in water. While some urban water treatment plants
have adopted chloramine, further research is needed to wvalidate its safety and practicality

comprehensively.

This study explores chloramine disinfection's effectiveness and safety by analyzing water quality
data. Descriptive statistics and Pearson correlation analysis of key indicators like chloramine and
THMs reveal that single indicators are insufficient for assessing water quality safety. Therefore,
additional parameters such as pH are included to develop a comprehensive water quality

prediction model.

2| Establishment of Quality Prediction Model

The development of water quality prediction models is essential for determining the suitability of
disinfected water for consumption. With advancements in technology and data processing
capabilities, researchers can now use two main types of models—mechanistic and
non-mechanistic prediction models—to forecast water quality, providing scientific guidance for

water pollution control [1].

Mechanistic prediction models are based on the fundamental physical and chemical principles
governing water quality changes. These models typically involve detailed environmental parameters
such as temperature, pH, dissolved oxygen content, and organic load, along with their interactions.
Researchers gather this data through laboratory experiments or field sampling and use statistical
and environmental science principles to build mathematical models describing water quality
changes. These models help scientists understand the behavior of various pollutants in water
bodies, predict the impact of different treatment methods on water quality, and assess long-term
trends. For example, dynamic simulations of nitrogen and phosphorus exchange in water can

predict algal growth and the associated risk of eutrophication [2].
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Non-mechanistic prediction models rely on extensive historical data and advanced data analysis
techniques. This approach does not depend directly on the physical or chemical mechanisms of
water quality changes but uses machine learning algorithms, statistical models, and other tools to
identify patterns and relationships in the data [3]. By collecting water quality monitoring data from
past years, researchers can employ time series analysis, regression analysis, or more complex
machine learning models, such as support vector machines and neural networks, to forecast future
water quality indicators. These models excel at handling large, variable datasets and can

continuously improve prediction accuracy by adapting to new data [4], [5].

2.1| Descriptive statistics and correlation testing

Firstly, we calculate the relationship between the content of chloramine and trihalomethanes and
their drinkability, and determine whether the drinkability of water quality can be judged solely

based on these two characteristics [0], [7].

Table 1 descriptive statistics

Water quality type Chloramine content trihalomethane content

The average content of drinkable

7.09 mg/L 66.30 ug/L
water
Median of drinkable water 7.09 mg/L 66.54 ug/L
The average content of non
) 7.17 mg/L 66.54 ug/L
drinkable water
Median of non drinkable water 7.22 mg/L 66.68 ug/L

From statistical data, the difference between chloramine and trihalomethanes in drinkable and non
drinkable water samples is not significant, indicating that these two indicators alone are not
sufficient to determine the drinkability of water. Next, we will further calculate the correlation

between these two indicators and drinkability.

Pearson correlation coefficient is commonly used to measure the linear relationship between two

variables X and Y. Pearson correlation coefficient. The calculation formula for  is as follows:
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The correlation coefficient, which ranges from -1 to 1, quantifies the strength and direction of the
linear relationship between two variables. A positive value indicates a direct relationship, while a
negative value signifies an inverse relationship. In addition to calculating the correlation coefficient,

a significance test (typically the p-value) assesses the reliability of the results. A p-value less than



0.05 indicates a statistically significant correlation, whereas a p-value greater than 0.05 suggests

that the correlation may be due to chance.

In this study, the correlation coefficient between chloramine and drinkability is 0.024 with a
p-value of 0.174, indicating a very weak and statistically insignificant relationship. Similarly, the
coefficient for trihalomethanes (THMs) is 0.007 with a p-value of 0.691, also showing a weak and
insignificant relationship with water drinkability. These findings suggest that the concentration
levels of chloramine and THMs are not effective predictors of drinkability, indicating a need to

consider additional chemical indicators or factors for a more accurate assessment of water quality.
2.2 | Data preprocessing
2.2.1| Missing value statistics

We first examined the missing values of each field and then used appropriate methods to handle

them. View rnissing values through Pandas library and rnissingno library, as shown in Figure 1.
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Figure 1 Missing Value Statistics Chart

The number of missing values for the characteristic "pH value" is 491, accounting for 14.99%.
The number of missing values for the characteristic "sulfate (mg/L)" is 781, accounting for
23.84%. The number of missing values for the characteristic "trihalomethane (unit: u g/L)" is 162,

accounting for 4.95%.
2.2.2| KNN filling

The data analysis revealed some missing values. We decided to use the KNNImputer class to
address this issue. This method uses the K-nearest neighbors (KNN) algorithm to estimate

missing values based on the similarity between "neighbors."



5 Research on Water Quality Prediction Based on Machine Learning

We set the n_neighbors parameter to 5, meaning the nearest 5 non-missing values were used for
each imputation. The KNN algorithm's ability to consider the distribution of other features
enhances the reliability and accuracy of the imputation process. This approach is more effective

than traditional methods like fixed value or mean imputation [8], [9].
2.2.3| Outlier test

In this article, the boxplot() function in the matplotlib library is used to draw a box plot for each
column of data, and the number of outliers in each column of the dataset is calculated based on
the results of the box plot. According to the box plot principle, data with IQR less than Q1-1.5 X
IQR or greater than Q3+1.5 X IQR are defined as outliers. These data need to be filtered out and
only valid data should be retained for subsequent analysis. Finally, draw another boxplot using the
filtered data and save it to the output directory. Through this approach, outlier handling can be
automated, reducing manual intervention during data processing, and enabling more objective
identification of outliers in the data, as well as accurate calculation of the number of outliers. The
tollowing figure shows the original data box plots of all features and the data box plots after
outlier processing[10], [11].As shown in Figure 2.
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Figure 2 outlier test

2.2.4| Yeo-Johnson

To prevent model overfitting and enhance generalization, it is crucial to analyze the data
distribution for consistency. We imported the data and used Python to assess whether each
column followed a normal distribution, employing the stats.skew() function from the SciPy library
to check for the need for Yeo-Johnson transformation. Skewness quantifies the asymmetry of the
data distribution relative to the mean: a skewness of 0 indicates symmetry, while positive or
negative values indicate right or left skewness, respectively. In this study, if the absolute skewness
exceeded the threshold of 0.05, the data was deemed non-normally distributed and required
Yeo-Johnson transformation. Figure 3 illustrates the original density histogram of Distancel

alongside the histogram after the Yeo-Johnson transformation.
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2.3| Feature engineering
2.3.1| Pearson correlation analysis

From Figure 4, it can be seen that the correlation between most features is not very high. So we

don't need to delete the features.
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Figure 4 Pearson correlation

2.3.2| Shap value analysis

Next, we will calculate the importance of the features. SHAP values are based on Shapley values in
cooperative game theory, which can provide explanations for the contribution of each feature to

model predictions. As shown in Figure 5.

The importance of all features is relatively average, with no particulatly prominent or low ones.
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Figure 5 Importance of Features

Combining correlation analysis and feature importance:

Correlation analysis: There is no high or low correlation between features, so from a correlation

perspective, there are no obvious candidate features that need to be removed.

Feature importance: The importance of all features is relatively balanced, with no particulatly low

feature importance values, indicating that each feature provides certain information to the model.

Therefore, from the current analysis, there is not enough reason to remove any feature. All
features have their unique contributions and are not highly correlated with each other, indicating
that they provide relatively independent information. It is recommended to retain all features for

model training without further business understanding or other external information.

2.4| Division of training and testing sets

When processing the dataset to prepare a water quality prediction model, MinMaxScaler was first

applied for feature normalization. Normalization is the process of scaling the range of data to a



given minimum and maximum value, typically between 0 and 1. For each feature, the
normalization calculation formula is:
scaled = ( )_ ( )

)

Where x is the original data value, min (x) and max (x) are the minimum and maximum values of
the feature in the entire dataset, respectively. In this way, all eigenvalues are rescaled to the range
of 0 to 1, which helps to handle ecigenvalues of different magnitudes and can accelerate the
convergence speed of algorithms such as gradient descent, as they are not affected by certain

extreme values during the calculation process.

Next, the data is divided into a training set and a testing set. The segmentation ratio is 20% for the
test set and 80% for the training set. This segmentation is achieved through the train_test_stplit
function, where test_stize=0.2 is set to specify the proportion of the test set. In order to ensure
that the segmented data can still maintain the proportion of each category in the original data, a
hierarchical sampling strategy (strategy=y) was adopted. Hierarchical sampling ensures that the
proportion of each category in the training and testing sets is similar to that in the original dataset,
which is particularly important for handling imbalanced datasets and can avoid bias caused by too

few samples in a certain category during model training.

2.5| Establishment of Water Quality Prediction Model
2.5.1| Model training and parameter optimization

In this article, three popular gradient boosting machine models were used: XGBoost, LightGBM,
and CatBoost. These models are efficient tools for classification tasks in machine learning, which
improve prediction accuracy by constructing a series of decision trees and making each new tree

improve the errors of the previous one.

In order to find the optimal configuration for each model, this paper adopts the Randomized
Search CV method for random search optimization of hyperparameters. This method is different
from Grid Search, as it randomly selects parameter combinations within a specified
hyperparameter space for model training and evaluation. This randomness helps to explore a
wider parameter space while reducing computational costs. In this process, StratifiedKFold was
used for cross validation to ensure the effectiveness of the evaluation and reduce the risk of
model overfitting. This method divides the data into k subsets, with each subset alternately serving
as the test set and the rest as the training set during model training, while maintaining the same
proportion of categories in each subset as in the complete dataset, thus ensuring the balance

between training and validation.

After completing the hyperparameter search, select the best performing model instance from the

search results. These best model instances were subsequently used to construct BaggingClassifier,
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which is an ensemble learning method. Ensemble learning improves prediction accuracy and
stability by combining multiple models, with the core idea of bagging (Bootstrap Aggregating)
being to resample the original dataset multiple times to form multiple different training data
subsets, and then train a base model for each subset. In this example, each type of model
(XGBoost, LightGBM, and CatBoost) uses the best parameters found by RandomSearchCV to
train multiple independent models, and integrates these models through BaggingClassifier. The
tinal prediction result of the integrated model is based on the average or majority vote of all
individual model predictions. This method can significantly improve the model's generalization
ability to new data and reduce the risk of overfitting on specific samples. Figure 6 is a schematic

diagram of hyperparameters for three models in this article, corresponding to different seed

models.
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Figure 6 The optimal hyperparameters for gradient boosting algorithm

2.5.2| Model fusion

In this article, an advanced model fusion technique called stacking is employed to improve the
prediction accuracy and robustness of the final model. Stacking is an integration technique that
works by training another model (called a meta model) on the outputs of multiple base models in
the first layer. In this method, several different models are first trained (based on different
ensemble BaggingClassifiers in this article), and then the outputs of these models (usually
probability predictions of categories) are used as a new feature set to train the meta model. In this
article, the meta model is logistic regression, which makes the final decision by considering the
probability of the base model output. Using probability rather than category labels allows the meta
model to capture more information about uncertainty, thereby making more refined decisions.

When implementing stacking, it is first necessary to ensure that different base models are



sufficiently diverse, as model diversity is the key to improving stacking performance. Then, the
meta model is trained by using the predicted results of the base model as input. This approach
enables the meta model to learn which base models are more reliable in specific situations, thereby

optimizing the overall prediction performance.
2.5.3| Performance evaluation

In this article, the performance evaluation phase focuses on using multiple metrics to
comprehensively evaluate the performance of the model, ensuring that the model's performance

is understood from different perspectives.
Firstly, the following four commonly used performance evaluation metrics were adopted:

Accuracy is the proportion of correctly classified predictions (true cases and true negative cases)

to the total sample size. The formula is:

Accuracy = - €]

Accuracy is the proportion of observations correctly predicted as positive to the total number of

observations predicted as positive. The formula is:

Precision = ——— 2

The recall rate is the proportion of observations correctly predicted as positive classes to the total

number of actual positive classes. The formula is:

Recall = —— (3)
+

The F1 score is the harmonic mean of precision and recall, representing a balance between these
two indicators. The formula is:

Precision x Recall
x —
Precision + Recall

F1 Score =2 )

The calculation results are shown in Table 2.

Table 2 Model comparison chart

Accuracy precision recall F1 score

XGBoost Bagging 0.655488 0. 690667 0.570547 0.53296

LightGBM Bagging 0.663110  0.654275  0.600000  0.591284
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CatBoost Bagging 0.6600061 0.654275 0.596094 0.586298
Stacking 0.650915 0.627307 0.611094 0.612312
Voting 0.664634 0.668060 0.594219 0.578898

Attention based CNN-LSTM 0.68598 0.679705 0.685976 0.667777

Secondly, use confusion matrix to intuitively understand prediction accuracy. Confusion matrix is a
very useful tool that demonstrates the performance of the model in each category, including true
positives, false positives, true negatives, and false negatives. By using the confusion matrix, it is
possible to intuitively see which categories the model performs well in and which categories have

problems.

Then draw the ROC curve, which is an important tool for evaluating the classification
performance of the model, especially when the dataset is imbalanced, along with the receiver
operating characteristic curve (ROC curve) and AUC (area under the curve). The ROC curve is
plotted by calculating the true positive rate (recall) and false positive rate (false positive rate) at
different thresholds. The AUC value provides the ability of the model to distinguish between
positive and negative classes, and the higher the AUC value, the better the performance of the

model. The calculation formula for AUC is the area under the ROC curve.

In this article, ROC curves were plotted for each model and corresponding AUC values were
calculated, which helps evaluate the model's classification ability for different categories. By
drawing ROC curves and calculating AUC separately for each category, we can gain a detailed
understanding of the model's performance on each category, providing guidance for further

optimizing the model.As shown in Figure 7.
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Voting confusion matrix _Voting Multi class ROC curve
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Figure 7 The confusion matrix and ROC curve of each model

5| Conclusion

This article analyzes the advantages and disadvantages of chlorine gas and chloramine disinfection
methods, especially the hazards of trihalomethanes produced by chlorine gas disinfection, and
clarifies the advantages of chloramine disinfection in reducing by-product generation and
alleviating chlorine odor. Through the collection of water quality prediction data, this article
conducted an in-depth analysis of the relationship between indicators such as chloramine and
trihalomethanes and the drinkability of water quality. It was found that relying solely on these two
indicators cannot accurately determine water quality. Therefore, this article introduces more
indicator data and conducts comprehensive preprocessing and feature engineering on the data.
Based on this, Stacking, Voting, and attention based CNN-LSTM classification prediction models
were constructed, and the hyperparameters of each model were optimized through random search
and cross validation. Finally, the performance of each model in water quality prediction was

evaluated, verifying the effectiveness and accuracy of the combination of multiple indicators and



advanced models in water quality prediction, providing scientific basis and technical support for

water quality safety monitoring,
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